《植树问题》教学反思

时间:2024-09-03 17:17:17
《植树问题》教学反思

《植树问题》教学反思

作为一位优秀的老师,教学是重要的任务之一,通过教学反思可以很好地改正讲课缺点,那么问题来了,教学反思应该怎么写?以下是小编帮大家整理的《植树问题》教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。

《植树问题》教学反思1

“植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的内容,它原先是奥数知识,是少部分学有余的孩子学习的。而新课程改革后,该内容被选入课本,每个孩子都要参与学习。这时,我们该怎样去组织课堂教学呢?

1、引导学生画图理解。

植树问题的思维有一定的复杂性,对于刚接触植树问题的四年级学生来说,则更有一定的难度了。所以,我觉得让学生画图来理解深化,更好一些。学生在画图的过程中,不仅可以很好的理解题意,找到其数量间的'关系,而且能很好的培养其学习方法和思维习惯。让学生通过直观的观察初步感知三种情况:两端都栽“棵树=间隔数+1”,一端栽一端不栽“棵树=间隔数”,两端都不栽“棵树=间隔数-1”。等学生找到规律后再解决这类问题就简单多了。

2、创设情境,让数学走近生活。

“数学来源于生活,而又服务于生活。”在学生初步感知植树问题的几种不同种法的基础上,创设与学生的生活环境和知识背景密切相关的、学生感兴趣的、以便能更好的理解与植树问题有关的生活题型,如插红旗,安路灯、排队做操等,让学生在具体生活中理解数学现象,并运用规律解决形式各异的生活问题,使学生深深地体会到数学的价值与魅力。

3、加强训练。

数学离不开训练,特别是对小学生,因为他们的忘性较大,很多的知识在课堂上学的很好,但时间一长,就会遗忘。这样,就要求教师注重平时的有意识的强化和训练,只有这样,才能加深理

4、这部分虽学得扎扎实实,但问题也存在着。

(1)针对学生能够找到简单植树问题的规律“棵数=间隔数+1”却无法运用这个规律求路长的问题,因为学生的认知起点与知识结构逻辑起点存在差异。以为学生能发现“棵数=间隔数+1”就能解决问题了,实际上这只是部分学生具备了继续学习的能力,这恰恰导致了能找规律却不会用规律。也就是在发现规律与运用规律间缺少了的链接,我要加强对规律的扩散教学,比如:得出规律时,可以说说“间隔数=棵数-1,路长=间隔数X间隔长”等等知识的扩散。

(2)把握每一个细节,问题即时解决,站在学生的角度去思考问题。比如:学生的质疑,间隔长和间隔数之间的区别,两端和两边的区别,应该考虑学生的知识构建,学生的知识认知一般是在具体情景中通过活动体验而自主建构的。没有体验,建构就会显得很抽象。在这一次的教学设计中,虽然我创设了情境,但学生仅凭一次体验是不可能全部达到继续建构学习主题的水平。我可以利用线段图或者实例来帮助学生学习。让学生有可以凭借的工具,借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。

《植树问题》教学反思2

《植树问题》是智慧广场中的内容,主要是向学生渗透有关植树问题的一些思想方法,通过现实生活中一些实际问题,让学生发现规律,然后再用发现的规律解决生活中的一些实际问题。植树问题分为两端都栽、两端都不栽、一端栽一端不栽三种情况。本节课教学的是植树问题中的第一种情况,即两端都栽的问题。反思整个教学过程,我认为有以下几点做得比较好:

一、关注学生的学习起点

学生是数学学习的主人,教师作为学生学习的组织者、引导者与合作者,应及时关注学生学习的起点。在教学过程中,我通过对五指的手指个数与手指缝之间关系的探究,在直观形象的手指演示中让学生初步感知棵数与间隔数的关系。本课伊始,我首先出了个谜语:“一棵树,五个叉,不长叶子不长花,能写能做还会画,就是不会开口讲讲话。”随后让学生观察自己的手指,引导学生得出:五个手指有4个间隔,4个手指有3个间隔,3个手指有2个间隔,2个手指有1个间隔。使学生清楚地看出手指的个数与间隔数之间是相差1的。接下来又通过做快速问答的游戏,使学生加深认识了植树问题中间隔数和棵数的关系,为下面的学习做了铺垫,同时学生的学习兴趣也被激发了起来。由此可见,我们在教学中一定要关注学生的学习起点,放低起点,这样才会收到事半功倍的效果。

二 、注重学生的自主探索

在探索新知这个环节,是这样设计的:

快乐探究:

在20米长的小路一边等距离植树,两端要栽,可以怎样栽树苗?

设计了一个表格

全长(米) 间隔(米) 线段图 间隔数(个) 棵数(棵)

1、把上表补充完整。

2、“两端要栽”的时候,我发现:棵树比间隔数

我能用等式表示棵数与间隔数之间的数量关系:

棵数=

学生通过自己动手画图,很快就发现了其中蕴含的规律。展示环节,我让展示小组的学生利用展示台给大家展示,学生指着自己画的线段图边讲解边说,让其他同学清楚地看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。改变间距后,段数和棵数相应也发生了变化。

通过自学,小组交流,小组展示,学生很容易的.得出了在两端栽的情况下棵数与间隔数之间的关系是:总长÷间距=间隔数,棵数=间隔数+1。整个学习过程都是学生自主探索的结果。学生把整个分析、思考、解决问题的过程全部自己展示了出来。在这一过程中,学生积极思考,大胆尝试,主动探索,也体验到了成功的喜悦和学习的乐趣。

三、关注植树问题模型的拓展和应用

规律总结出来了,我并没有就此罢手,而是让学生找生活中的类似现象,使学生认识到生活中的许多事例看上去跟植树问题毫不相干,但是只要善于观察题中的数量关系,就明白它与植树问题的数量关系很相似,如计算公共汽车从起点站到终点站所行的距离及爬楼梯问题。求路边的电线杆、排座位、在路两旁安装路灯、插彩旗等等,目的是让他们利用所学植树问题的知识来解决生活中的数学问题,使学生感受到数学知识源于生活,用于生活,数学就在我们身边。从而使学生深刻感受到数学的应用价值。

四、渗透数形结合的思想,培养学生借助图形解决问题的意识

数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质。本着这个思想我在让学生理解间隔数与植树棵数之间的规律时,我采用数形结合的方法——画图解决问题,从而逐步提高学生解决问题的能力。练习环节,我还设计了我们平时熟悉的钟声,让学生听钟声,在听到基础上用线段图画出钟声和他们之间的时间的间隔。学生在听、画之后初步感受了间隔数和棵数之间的关系。同时,通过画图,降低了此题的难度。再如:在解决锯木头问题时,通过成语“ ……此处隐藏12369个字……一条线段上的植树问题,也可能有不同的情形。如两端都要载,一端栽另一端不栽,两端都不栽。而在封闭曲线上的植树问题可以转化为一条线段上的植树问题中的一端栽另一端不栽的情况。

成功之处:

分类教学,抓住教学重难点,避免出现知识的空档。在教学中,我通过教学例1的两端都栽的情况。这类问题,学生对于求棵树比较容易理解。但是对于在公路的两旁栽树,学生往往容易出错,因此在教学的过程中,多出一些在两旁栽树的情况,让学生能够注意。另外,在这个教学中还注意让学生逆向思考,如:在学校门前小路的两边,每隔5米放一盆菊花(两端都放),从起点到终点一共放了20盆。这条小路长多少米?提醒学生逆向思考问题,也就是要先求一旁小路放多少盆,即20÷2=10(盆),然后再求间隔数,即10-1=9(个),最后求小路的全长,即9×5=45(米)。通过这样的训练,可以使学生不仅知其然,更知其所以然,还能培养学生逆向推理的能力。学生以后再见到难题,可以借助方程顺向思考问题,也可以逆向推理思考。经过这样的训练,学生就不至于感觉数学的困难了。这个单元容易出现的题目就是敲钟问题、锯木头问题、每个角都摆花的问题,这些问题可以一类一类地教学,把每个问题夯实,再进行综合训练,效果会更好。在这些问题中,尤其类似这样的问题要注意教学,如要在三角形花坛的边上种牡丹花,每边种10棵,可以怎样种?最少需要种多少棵牡丹花?这种类型题学生就要有多种考虑,一种是三个角都不种,每边种10棵,需要种10×3=30(棵);第二种是只种1个角,其他两个角不种,就需要种10×3-1=29(棵),第三种是种兩个角的情况,需要10×3-2=28(棵),第四种是种三个角的情况,需要10×3-3=27(棵),通过这样的教学可以避免直接教学课本习题中的棋子问题,学生就可以弄清楚为什么要用每边的数量乘边数候后还要减4。

在教学例1两端都栽的情况,也可以顺势教学其它情况特别是两端都不栽,除了画线段图理解之外,也可以让学生解释为什么要用间隔数减1,实际上中两都栽的情况中间隔数加1再减2,所以得到棵数等于间隔数减1。这样再教学只栽一端时,学生又可以在两端都不栽都情况下间隔数减1加1,就可以得到棵树等于间隔数,由此类推,学生更容易理解这三种情况之间的联系,不至于学一种记忆一种。

不足之处:

学生在学习例题时学得很好,一到接触到不同类型的植树问题就不知所措,还是存在搞不清哪种植树问题的情况。

再教设计:

在教学中,还是继续采取分类教学,既注重对分类教学的讲解,还要注意逆向思维的训练。

《植树问题》教学反思14

抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方针,等等,它们中都隐藏着总数和间隔数之间的关系问题,通常把这类问题统称为植树问题。

成功之处:

1.利用例1题目,渗透研究植树问题的思想方法:复杂问题——简单问题——发现规律——解决问题。让学生经历探索复杂问题的'过程,经历猜想、实验、推理等数学探索的过程,掌握研究问题的思想方法,渗透“化繁为简”的数学思想方法,尝试从数学的角度运用所学的知识和方法寻找解决问题的策略。教学中启发学生利用在 10米、15米、20米的小路一侧栽树,通过画线段图借助图形让学生体会当两端都栽、两端都不栽、只栽一端,棵数与间隔数之间的关系,从而发现植树问题不同情况的数学模型,进而解决例1的问题,学生也就能快速解决问题了,并且能够做到不仅知其然,还知其所以然。

2.渗透了一一对应的数学思想方法。通过线段图的理解,学生发现了植树问题的不同情况的数学模型。为了更深入理解这一数学模型隐含的数学思想方法,让学生观察线段图,一棵树对应一个间隔,当两端都栽时,发现最后一棵树没有对应的间隔,所以棵数=间隔数+1;当两端都不栽时,发现最后一个间隔没有对应的棵数,所以棵数=间隔数-1;当只栽一端时,发现最后一棵数对应最后一个间隔,所以棵数=间隔数

不足之处:

由于归纳总结了三种类型的植树问题,导致练习只做了一题,学生没有及时的进行巩固,知识夯实不够充分。

再教设计:

控制好教学节奏,增加练习量,夯实巩固所学知识。

《植树问题》教学反思15

12月2日我有幸观摩了胡圆老师执教的《数学广角》一课,本节课胡老师通过一系列的游戏活动,让学生在轻松的学习氛围中经历重复问题的探究过程,利用直观图和集合的思想方法解决生活中的实际问题,让数学课堂活起来了。下面结合这节课的一些细节,谈谈我的一些思考。

开课伊始,教师先给同学们讲了一个理发师理发的故事,一下子就调动了学生的思维,教师引导学生探究出同一个人扮演爸爸和儿子角色,为后面学习重复知识埋下伏笔。接着老师组织了抢椅子的游戏,又通过石头剪刀布活动选出参加抢椅子游戏的选手,此时,教师提出了问题:参加活动的.人一共多少人?请参加活动的人站起来!教室有6名学生站起来了,教师又提出了疑问:“不对呀,参加剪刀石头布的是4个人,参加抢椅子游戏的是3个人,4+3=7。应该是7个人啊!”事实和老师的推理发生了碰撞,学生陷入了思考,矛盾中急需老师的点拨。而老师并未马上揭晓原因,而是拿出了两个呼啦圈,让参加剪刀石头布的4名学生先钻入1号圈中,让参加抢椅子的3名同学再钻入2号圈中,在这个过程中,全体学生发现刘阳同学开始钻入1号圈又钻入2号圈,他既参加了剪刀石头布活动,又参加了抢椅子游戏。老师又提出问题:“那怎么样让刘阳既在1号圈又在2号圈?”学生提出将两个圈重合一部分,刘阳就站在重合的这部分,刘阳的身份是双重的,此时学生对于刚才遇到的矛盾冲突已经有了理性的解释。接着老师又将两个重合一部分的圈画到黑板上,形成了集合圈,并让6名参加游戏的学生上台在合适的位置贴上自己的名片。学生将刘阳的两张名片重合在一起贴在两个圈相交的部分。此时老师引入了重复现象,学生对重复现象有了清晰的认识了。从呼啦圈过度到黑板上的集合圈,是一个从具体到抽象的过程,正符合小学的思维特点。教师引导学生探索知识的过程,正是学生在头脑中进行建模的过程,课堂上教师组织的游戏活动正是知识的直观依托。

老师在引入概念后,马上在课件上出示了一些集合圈,让学生判断哪些是重复现象,哪些不是重复现象,对新知进行了巩固。学生对重复现象有了更深刻的理解。课堂练习内容有利于学生利用重复现象和集合思想解决生活中的问题,通过练习,让学生进一步巩固新知。

本节课中还有很多值得我们学习的地方,环环相扣的教学流程,大胆创新的教学理念,循循善诱的教师引导,新颖活泼的教学形式给我留下了深刻的印象,希望在今后的教学中,自己能够认真研读教材,设计出更好的教学方案,并能将其灵活运用于自己的教学中。

《《植树问题》教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式